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The theory of local random matrix models has provided a way for understanding many aspects of quantum
ergodicity and energy flow in molecules. In this paper quantitative results are presented for a random matrix
model that yields analytical expressions for the degree of vibrational mixing and flow rates in polyatomics

in terms of a small number of parameters. The results of these generally applicable expressions are compared
with large scale computation on energy flow in several organic molecules studied experimentally:
formaldehyde, thiophosgene, and propyne. We show these systems are respectively below, at, and significantly
above the quantum ergodicity transition. Effects of finite molecular size on the quantum ergodicity transition
are also discussed.

I. Introduction This special treatment, which is detailed in the Appendix, may
be useful in other cases where the polyad number is ap-
proximately conservetf Finally, because the local random

computationaf, and theoretical studie®f vibrational relax- ins’lartlgéé)srsg;gtlfonscgarls?g)e/ragggcltg tgfe fti?]iet;ms(,)i(zjgn\?vrk?g\“rrzgi(il;g

ation in polyatomics. Large scale simulations and experimental oo ictions about a specific molecule. We examine the extent
studies on a number of small molecules have provided a wealthy, \yhich finite size effects lead to the possibility of large scale
of detailed information about vibrational mixing and energy s ot necessarily ergodic flow over the energetically available
transfer. I—ngever, despite notable successes on rather largg e space for some states strictly below the quantum ergodicity
molecules™ detailed analysis of the complete vibrational yansition. The probability of such extensive flow is seen to

Hamilton_ian of a large polyatomic is still a very deman_ding_ decrease rapidly as the size of the molecule considered increases.
undertaking. Fortunately, such large scale computation iS  the grganization of this article is as follows: The local

apparently not needed for understanding a great deal about the.,,4om matrix model and its predictions for the location of the

qualitative nature of intramolecular energy flow or, as we shall 5ngition and for vibrational mixing and energy flow rates are
show here, even to predict the extent and rates of flow to modestg, \marized from previous work in section 1. In section |

accuracy. Alternative approaciiéso large scale computation e examine a case very convenient for describing polyatomics,
treat the oscillator energies and local couplings statistically, the 5 5.1 gscillator model. where a fraction of the oscillator
distributions of which are parametrized to suit the harmonic frequencies are about’twice those of the others. Here we
vibrational spectrum and anharmonicities of a particular poly- o mnare predictions for vibrational mixing with computational
atomic. The resulting local random matrix ensemble yields roq,t¢ for formaldehyde. In section IV we compare rates of
analytical expressions predu;tmg vibrational mixing, rate.s'of flow with numerical results for propyrfewhich is well above
energy flow, and the location of the quantum ergodiCity i transition, and thiophosgefeayhich is near its ergodicity

transition between localized and extended states. transition. Finite size effects on the quantum ergodicity
In this article, we compare predictions for vibrational energy transition are discussed in section V.

flow and localization obtained from local random matrix models

with results of computational studi€®® on several organic  ||A. Model

molecules. Our results are in some sense meant to serve as an . . S
illustration of a general approach for analyzing specific systems. W? COF‘S'def a local random matrix model of the vibrational
The systems chosen were those for which appropriate data forHamlltonlanH =Ho+V,

comparison could be found in the literature. The molecules N

we consider are formaldehyde, propyne, and thiophosgene, Ho= S e (R) (2.1a)
which serve as examples of how to analyze both vibrational 0 L.
mixing on the localized side and flow rates on the extended

side of the transition, as well as behavior near the transition. V= z |‘|q>mb2;”h+ba”h’ (2.1b)

The formaldehyde molecule has long been the subject of ol

extensive experimental analy$fsand recent computational

studies provide additional results against which predictions of wherem = {mf, m§ ..4. The zero-order Hamiltoniafig

the analytical theory can be compared. Formaldehyde is alsoconsists of a sum over the energies of the nonlinear oscillators,
interesting because the polyad quantum number is approximatelywhere each oscillator has frequeney(n,) = A~19eq(Ng)/dNg,
conserved at low to moderate energiés,so that a more and nonlinearitywu(Ny) = A~ 2we(Ne)/dNg, and the number
elaborate counting scheme than that otherwise ad&pted operator is defined byi, = blba- The set of zero-order
required to determine local level densities for the matrix model. energies{¢,}, and coupling terms i, { @}, are treated as
random variables. The Hamiltonian of eq 2.1 includes direct
€ Abstract published ifAdvance ACS Abstractfecember 15, 1996. resonant coupling terms of arbitrary order. Such high-order
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The central role of intramolecular energy flow in chemical
kinetics and photochemistry has long motivated experiméntal
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terms are in general crucial in locating the transition between
localized and extended sta#@g4 Defining p = Yq(m, +
m,), we assume that thgd,} decay exponentially wittp
a§,15—17

O, =D,0° " (p=3) (2.2)
where®3 is a cubic coupling term. In a given molecul®z
can take on values of the order 610 cnT?; realistic values
of o typically range between 3 and $0A good approximation
to the off-diagonal matrix elements bffkeeps only the largest
contributions generated by the coupling of egs 2.1b and 2.2.
Defining the distanc&) = Y q/ng — Ny in quantum number
space, where, is the number of quanta in modeof one state
and n, the number of quanta in the same mode of the other,
matrix elements connecting two states a dista@deom one
another are approximated by

Vo= ®,0° MY Q=3 (2.3a)

Vo= D0 M, Q<3 (2.3b)
whereM is the average number of quanta per mode. Equation
2.3 approximate¥q to highest order im. While we neglect
them here, contributions of terms lower orderdrhave been
evaluated in ref 17. The approximation¥g given by (2.3b)
follows from eq 2.2, since the lowest order contribution¥/{o
andV, come from cubic and quartic terms, respectively, so that
V1 ~ Vs andV;, ~ V,. Because of large variation i3 ando

for a given molecule, we expect a large dispersiorvinfor

any Q. Nevertheless, as we shall see below, coupling matrix
elements enter into theoretical preditions for vibrational mixing
and flow rates only as averages. The vibrational Hamiltonian
H is thus parametrized by sets of frequendies}, nonlineari-
ties{wg}, cubic coupling term§®3} ; M, the number of quanta
per mode; and, the rate of exponential decrease of higher order
coupling terms.

1IB. Local Random Matrix Predictions

Analysis of the Hamiltonian introduced in section IIA has
led to many predictions relevant to vibrational mixing and flow,
details of which are provided in refs 7, 12, and 18. The aim of
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or not we obtain a nonzero flow rate in the self-consistent
analysis depends on the local coupling and the local densities
of states coupled tjl] This information is contained in a single
parameterT, which is defined by eq 2.4. For valuesbiess
than 1, the self-consisent theory yields a vanishing flow rate,
while finite flow rates are found fof > 1. The quantum
ergodicity transition thus lies at the critical valde= 1. In
addition to the location of the quantum ergodicity transition
separating localized from extended states, the degree of
vibrational mixing on the localized side of the transition, and
rates of energy flow on the extended side are all given by
analytical expressions derived from the model, each of which
is determined by a few parameters characterizing the spectral
dispersion and anharmonicities of the particular polyatomic
studied. In this subsection we review results previously
obtained-1?18for the local random matrix model d.

The central parameter determining the extent of vibrational
mixing is the transition parameter, defined as

T(E) = (m/s)(g Kool o(E))? (2.4)

The transition parameter is expressed in terms of the average
effective coupling,fyg|L] to states a distano® away. The
effective coupling defined by eq 2.10 incorporates both the direct
coupling Vg to these states and off-resonant contributions. If
we choose to neglect the latter, thgg = Vg given by eq 2.3.
Apart from the local effective coupling, the local level density
is required to determine the transition parameter. The local
density of states that lie a distanQeaway isKqDg(E), where

Kq is the connectivity an®q(E) is the probability of there being

a state at energlf. Each parameter will be determined below
for oscillator systems characteristic of moderate size to large
polyatomics. The sum in eq 2.4 refers to direct coupling to all
sets of states a distan€ein quantum number space from the
initial state.

According to the self-consistent theory, the transition between
localized and extended states is found whEiE) = 1. When
T(E) < 1, states are localized. The degree of localization is
guantified by the inverse participation ratiby, also called the
dilution factor, used by molecular spectroscopists as a measure
of vibrational mixing?®2! The dilution factor is defined ag
= Y,lcal% wherecj;, = [4|j0) with |jOan eigenstate dfly and

the analysis was to determine self-consistently rates of energy|A0an eigenstate of the coupled oscillator Hamiltortan The

flow out of a statejCof the vibrational space, an eigenstate of
the uncoupled oscillator Hamiltonidt#y. Because the couplings
to other states of the vibrational space defined in section IIA
depend on the distand@ from |jdJin quantum number space,

dilution factory is equivalently the long-time survival probability

of state|jland is determined experimentally by the sum of the
squares of the relative intensities of the spectrum. We have
shownri® that a close approximation to the distributionyofan

the state space is organized into tiers of states, where the locatiorbe expressed in terms 3{E) as

of each tier corresponds to its distan@efrom |jlJ We have

assumed in our treatment a statistically homogeneous structure

for the vibrational space; i.e., statistically, the couplings and
local densities of states coupled to states of one tier are
equivalent to those coupled to states of any other tier if each of
the states is close in energy. The approximation of a homo-
geneous structure should be valid for most states of the

_mYy
y) (2.5a)

Py) =yy "A1—y) exp( 1

_ (i T(E) )1/2
\2r1-T(E)

(2.5b)

vibrational space that are close in energy, so long as all that A number of studies on the approach to strongly mixed or

energy is not concentrated into one or very few of the vibrational extended vibrational states consider the average dilution factor,
modes. States where energy is concentrated in very few modeqsym given by

lie at the edge of the vibrational space. For such “edge” states,
flow often proceeds through a sequence of statistically inho-
mogeneous tiers to the interior, due to a sparsity of flow
pathways for flow from the edge. We have recently treated
the problem for flow out of edge states in a model oscillator whereDy, is the parabolic cylinder function. Recent numerical

y= [yPy) dy=€""D_(Voryy)  (2.6)

systemi* Here we focus mostly but not exclusively on
vibrational mixing and energy flow over the vast majority of

studies by Bigwood and Gruebele on a local random matrix
model of thiophosgeié2 support the validity of eq 2.5 for the

states of the vibrational space that occupy the interior. Whether dilution factor distribution.
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WhenT(E) is greater than 1, eigenstatestdfat energyE represents terms of successively higher order, is as follows:
are extended, enabling facile energy flow throughout the Each segment of any diagram is associated Wifiland each
vibrational state space. The theory predicts a singular critical filled vertex with Kq[AEg) ~*[] whereAE; is the level spacing
behavior for the flow rates very near the transition. Above the to states a distanagfrom the previous vertex. A sum over

transition region, an estimate for the rakés), of flow out of at each filled vertex, under the constraint that the total quantum
a typical state oH at energyE is given by?2 number change i€, is implicit in each diagram. The first
diagram, then, represents direct coupling between two states
k(E) = M_IZKQDMQZMDQ(E) (2.7)  and is assigned the valudy,. The second term involves
a transition via one intermediate state and represents

. . . Y o VMAEy) V[ whereq + g = Qor|g — | =Q. We
where eq 2.7 is the average renormalized golden rule estimatengte that in the extended domain and when couplings become
for the rate. A related but not identical result for the damping |arge, all diagrams but the first one provide only very small
rate of.an excited mode coupled to a bath of oscillators has ¢gntributions tayo, since, just likeDy above [JAE,)~‘Cbecomes
been given by Stuchebrukh&\(see also ref 24). smaller with |Vg|. A reasonable estimate fafAE;)~0is to

Equation 2.7 must be distinguished from the usual golden ;se the average of the inverse spacing of the uncoupled
rule expression, for whicBg(E) is replaced by the zero-order intermediate states wher, < Koo When the coupling
density. This distinction becomes most apparent at high js |arge enough such thith) = KoMV, one can sef|AEy) 10
coupling, whereDg(E) varies inversely with the coupling (cf. (TKH3Vg)~2 and the high-order terms can be thereby
eq 2.8); for large couplings the energy flow rate then varies peglected.
linearly with coupling rather than quadraticalli? In fact, linear The connectivityKq to states a distanc® away is easily
variation of flow rates with large coupling is only one feature astimated for a large numbét of coupled oscillators. An

of vibrational energy flow in polyatomics that departs from the adequate estimate féio has been derived in ref 12 and is given
traditional assumptions. Schofield and Woly#tdsave argued by

that the locality of couplings allows enhanced returns to the
initial state so that the survival probability decays in local
random matrix models as a power law rather than exponentially
at long times. Several computational studies have reported such
power law decays and linear rate dependence with coupfidty. ~ whenN is large andQ is less thar2NY2 which is generally

In order to estimate the extent of vibrational mixing or rates sufficient for locatingT(E) and estimating flow rates. If there
of flow, we need to determine the values of three parametersare any selection rules that would modify the number of
as a function of the distand@ in quantum number space: the accessible states, a more specific counting procedure is required
effective couplinggo; the connectivityK; and the local density ~ to estimateKq. In the following section we treat an example
of statesDg. An analytical expression fobq is obtained ~ Where the polyad quantum number is approximately conserved.
assuming that the distribution of statestdf, the uncoupled o o )
oscillator Hamiltonian, a distanc® from a given state is  !ll. Vibrational Mixing among 2:1 Oscillators
described by a Lorentzian distribution with a width characteristic | this section we examine a particular realization of the

of the dispersion in oscillator frequencies. In this way an model described in section Il. We consider a systemNof

Ko~ (2N)%/Q! (2.11)

approximation tdDq(E)*? is found to be coupled nonlinear oscillators, whekg of the N oscillators have
frequencies with average;, while the average of the, = N
DQ(EZGJ.) = 5 2 — (2.8) — Nj other oscillator frequencies i8;, where®, ~ 2@1 over
allg+ (Ag + 42Q KoVo) 5 the range of energy we consider. Because of the 2:1 resonance
_ structure, the polyad quantum numbiy is approximately
whereVg is the typical, or average, value @§. The widthig conserved over these energies. For a 2:1 oscillator system the

depends on the oscillator frequencies, which we represent withpolyad number is given bi; = q:N; + 2q,N,, whereq; (q)
the root-mean-squareyns, of the set of oscillator frequencies, is the total number of quanta among tNe (N,) oscillators.

{wa}, and should grow witl® asQ?, so we sefq = QY% iwms This particular oscillator system mimics certain polyatomics in
Below and near the transitioBo(E=¢j) can be adequately  significant respects. Often stretch:bend frequency ratios are
approximated asi(= 1) approximately 2:1; a particular example is formaldehyde, where
each ofN; = 4 modes has frequency1500 cnt?, while the
Do(E=¢) ~ (7Q" ;) (2.9) frequencies of the other two modes are about 3000'criVe

consider formaldehyde in more detail below.

which is just the zero-order density. Comparing eqs 2.4 and We begin by determining the location of the transition
2.8, we observe that eq 2.9 is reasonable for value¥@f  between localized and extended states in this 2:1 oscillator
satisfyingVg < Kq?Vqc, whereVg, is the value ofVq at the system. For this we need to compdi) using eq 2.4, which
transition. For larger values &g, D(E) varies inversely with requires information about the coupling incorporateg i the
> oKqVa?, whereby rates vary linearly with coupling. connectivityKq, and local level densit{do(E) of states that lie

The effective couplingyg can in many cases be approximated a distanceQ from a given excited state. To lowest order in the
by the direct couplingVg given by eq 2.3. However, at low  coupling,yq = Vg given by eq 2.3; to compute higher order
energies off-resonant contributions can modifE) signifi- terms, information is required about the connectivities to states
cantly. A mean-field treatment of off-resonant terms adopted participating in off-resonant transitions between the initial and
in determiningyq is given in ref 12. The result can be most final states.

conveniently represented diagrammaticHllgs follows: To determineKq, we need first to estimate the number of
guanta in each mode, broken down into the number of quanta
_ i h of thelN, oscillators with frequency®,, and in each
w= O—0O + + Cf_\ - (2100 Ineac bl . Juency=as, _
Yak C{.\Q O ( of the remainingN; oscillators. With this information the

number of ways to remove quanta from the oscillators for a
The interpretation of each diagram, which from left to right given polyad quantum numb& can be calculated; then the
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Figure 1. Transition curves separating localized from extended regions
for 2:1 oscillator systems, where the ratioNifto N, is 2:1. The total N 8
number of oscillators is, from top to bottor = 6, 18, and 48 t P
oscillators; the polyad number I¢ = 8. Plotted is Ing, where¢ = Figure 2. Surfaces representing, from top to bottom, valueg,af,
©3M32wims * is the scaled cubic coupling, and in whereo is the andN; when the average dilution factéyC)= 0 (the transition), 0.4,
exponential decrease in magnitude of higher order resonant couplingand 0.8, for a 2:1 oscillator system wheMe= 4 andN, = 2. ¢ is the
terms. Solid curves represent estimatesTi#) = 1 whenyq = Vq, scaled cubic coupling, andis the exponential decrease in magnitude
and dashed curves locate the transition whenis computed using of high-order resonant coupling terni4.is the polyad number defined
the two lowest order terms of eq 2.11. by Ni = uN1 + 20N, wherequ (gp) is the total number of quanta

o . ) among theN; (N,) oscillators. Using representative values for form-
combination of ways to move a distanQen quantum number  aidehyde values of ¥Jare found to be 0.83, 0.55, 0.30, and 0.05
space while conservinly; is counted. This calculation would  respectively at polyad numbeks = 4, 6, 8, and 10, indicated by the
be sufficient for determinind@(E) if we approximatedyq by circles in the figure. The vertical gray lines have been drawn in for
the first term in eq 2.10. However, for the other terms, we orlentatlon. Note that curves connecting the integral valuds; afre
also need to count the number of ways to make off-resonant ®"Y @ guide.
transitions, so that the connectivity to values of higher and lower as part of a more general study of rotatioribration mixing
N; must also be determined. Details of the calculatiorKgf in formaldehyde, finding very close agreement between the
are provided in the Appendix. participation numbers obtained from their formaldehyde Hamil-

In Figure 1 we illustrate results comparing the location of tonian and the corresponding matrix ensemble. We now
the transition using eq 2.4 when first- and second-order terms compare results of ref 8 for the average participation number,
in yq are present, with those wheyey = V. For several cases  with the inverse of the average dilution factor predicted by eq
we plot In$ = In(PsM32w,ms 1), whereg is the scaled cubic 2.6, bearing in mind that these two averages are not identical.
coupling, versus I at their critical values corresponding to In our case, we can simply insert representative values for
the quantum ergodicity transition &t = 1. The oscillator formaldehyde by adopting a 2:1 system whblie= 4 andN,
frequencies have been fit to those of formaldeh§/déerew, = 2. Formaldehyde at a given polyad numbgthen appears
= 1445 cm?, @, = 2975 cm!, andwms = 192 cntl. The as a point on a plot like Figure 1. If we plot the same
number of modes iN = 6 (formaldehyde), 18, and 48; the parameters$ and o, as in Figure 1 at several values of the
ratio of N; to N» is 2:1; and the polyad numberl = 8. Figure polyad numberN;, we can observe how formaldehyde ap-
1 illustrates the role of off-resonant terms in locating the proaches the ergodicity transition with,. Such a plot is
quantum ergodicity transition using parameters representativepresented in Figure 2. Each surface in the figure corresponds,
of organic molecules. We observe in the figure that the role of from top to bottom, to successively larger values of the average
higher order terms in eq 2.10 becomes more significant as thedilution factor, 0] in the range 0 (the transition) to 1, and
ratio N:N; increases, which reflects the greater role of off- therefore to smaller values d{E) (cf. eq 2.6). The positions
resonant terms when the number of quanta per mode become®f formaldehyde in the figure were determined by usihg=
small. This trend is not unexpected, since the inverse level 15.2 cnt?, which we have estimated from the data in ref 8,
spacing{AEg) ~1[of off-resonant states contributes to all terms usingM = 0.9 forN; = 6, and by settingr = 10, which implies
in yq except the first one. Due to sign cancellati§gnEg) 10 that cubic terms essentially locate the transition in the simulated
will generally be small unless the total energy is very low, since random matrix model® For example, the value df obtained
only at very low energy are there more off-resonant levels of atN; = 8 is 0.31, and from eq 2.6, we find a value [gf1=
higher energy that are not canceled by those lower in energy.0.30 for the average dilution factor. This compares well with
We moreover observe the effect of higher order terms to be 0.11, the value of the inverse of the average participation number
most significant for largeo, which is consistent with our  atN; = 6 obtained in ref 8. AN; = 4 and 6, we findT for
expectation that smatt favors direct exchange, while large formaldehyde to be 0.01 and 0.08, respectively, yielding 0.83
makes vibrational superexchange a possible energy flow mech-and 0.55 for the average dilution factors, respectively. These
anism!* We mention that the results presented in Figure 1 do can be compared with 0.56 and 0.23, respectively, the inverse
not change much upon changing the raticNgfN,. However, of the average participation numbers reported in ref 8, where
the results are quite different in the absence of 2:1 resonancesagain we find quite reasonable agreement. We moreover
In the case where only 1:1 resonances are available, higher ordeestimate thal ~ 1 whenN; = 10, as seen in Figure 2, so that
terms in eq 2.10 are required for saturation of the transition for polyad numbers larger than 10 vibrational energy flow in
curves with larges.™ formaldehyde is predicted to be global.

We are finally in a position to make direct comparisons with It is worthwhile pointing out that reasonably similar results
results for formaldehyde. Sibert and co-workéiscomputed for T are obtained even if information about connectivities to
average values of the participation numbers for formaldehyde sets of oscillators with different values of the polyad quantum
for polyad numbers up to 812 000 cnl) with a detailed number is neglected. If we admit coupling to all states a
potential model. They went on to study also a random matrix distanceQ away, regardless of their value N, then eq 2.11
model mimicking the vibrational Hamiltonian of formaldehyde can be used to estimate the connectivity. Then using eq 2.9
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for the local density of states, where n@wsis the root-mean- TABLE 1: Estimates for the Transition Parameter, T, and

square frequency of all the oscillators, we fifid= 0.48 forN; Energy Flow Rates among Interior States of Propyne, Using
= 6, giving an average dilution factor of 0.20; while= 1.2 gestqlts ﬁ£ the Local Random Matrix Model Summarized in
whenN; = 8, suggesting energy flow in this polyad would be ecton _
already largely ergodic if we could ignore the polyadic _ energy (cm? T Ts rate (ps?) rate in ref 4
constraint. 3400 0.4 0.1

6600 7 1 1.2

9700 40 3.3 4.8 1.5

IV. Polyatomic Molecules

) aT;is an estimate fol obtained by truncating eq 2.4 @= 3 (see
The case of formaldehyde illustrates how the theory can be text). The energies listed lie close to thosevaf2v;, and 3.

applied when an approximately conserved quantity, the polyad

quantum number, is explicitly treated. The constraint of polyad The rate of energy flow is found to be4.8 ps?, reasonably
numbers enters into estimates for the local level densities, for close to the result of about 1.5 Psobtained by Bigwood and
which a special counting procedure was adopted. This may beGruebele in their large-scale computation.

easily generalized to other cases when faced with similar \We mention that the value fdrobtained from eq 2.4 is quite
selection rules. For many moderate size organic molecules (orsensitive to the presence of relatively high-order resonant
other polyatomics generally) a simpler approach to determining coupling terms in the propyne Hamiltonian. For example, we
the local level density is possible, whereby the connectiily  could estimatél by retaining only cubic terms, which amounts
can be estimated directly from eq 2.11. In the following, we to truncating eq 2.4 @ = 3. This estimate fofl, Ts, is then

use the simpler approach to estimate rates of vibrational energyT; ~ 3.3, which is very close to the transition value of 1. The
flow in two examples, propyne and thiophosgene. These sensitivity of T(E) to higher-order resonances in propyne is
systems have been studied computationally by Gruebele andconsistent with our previous observation concerning the general
co-workers}® so we can study the analytic results without role of high-order direct resonant coupling terms in locating
concern about modeling the energy surface. We assumethe ergodicity transition in large polyatomis4 Above the
throughout that the states from which energy flow commences transition region, however, energy flow rates depend largely
are typical, since as discussed in section |IB action space is noton low-order term3d2 For example, in propyne near 9700 ¢
entirely homogeneous, in particular near the edge of the we find a rate of 3.4 pg using only cubic terms, which is not
vibrational Space. While flow out of all COUp|Ed states at energy very different from our predicted rate with high-order terms
E is predicted to be global when the transition param@&(&) included. The important contribution of high-order resonances
is greater than ¥ rates of flow out of special states may not g flow rates enters in only at higher energies.

be typical. Flow out of edge states, where excitation is located  Spectroscopic studies suggest that the treshold to energy flow
in only one or very few modes, is in partiCU'ar not eXpected to in propyne should lie at an energy not very much b8|@ﬁi\133'32
exhibit flow rates that are typical of those of most isoenergetic Energy flow out of the 2; state is at best very much slower; in
“interior” states due to the Sparsity of flow pathways fO”OWing the absence of Coriolis Coup"ng the;lzpropyne Spectrum
excitation'® This leads to a specific pathway mechanism often reveals no vibrational relaxation. Whether or not energy can
involving dynamical tunneling?® These edge states are in  flow out of the 2, state to states of the interior depends on
many cases the easiest to interrogate experimentally so theywhether the isoenergetic interior states are extended or localized.

have received considerable attention in the laboratory. One recent computational study of propyne suggests there is

Our first example is propyne, which has been the subject of no flow to the interio3 though this study adopted only low-
intensive experiment&31-32and computation&P3investigation. order resonant coupling terms in the Hamiltonian, and we have
Laboratory experiments show that the second overtone of theseen that the existence of extended states rests to a large extent
acetylenic CH stretch (8) decays at a rate of about 31s? on higher order resonances. We can use eq 2.4 to estimate the
In a computational analysis of propyne, a flow ratex ns! value of T(E &~ 6600 cnt?) for propyne. We adopt again the

out of the same edge state was also obsetv@igwood and propyne parameters provided in ref 4 and adMsthe average
Gruebele moreover computed energy flow rates for a number number of quanta per mode, for propyne at around 6600'cm
of isoenergetic interior states, finding that flow out of interior to be about two-thirds its value for propyne near 9700 tm
states at this energy of about 9700 ¢nis considerably faster ~ We thereby obtain estimates for the coupling matrix elements
than flow out of the acetylenic stretch. In particular, Bigwood using eq 2.3. We then find for the transition parameter at
and Gruebele’s computations revealed an average flow rate ofenergies nearn? a value ofT & 7.0, which lies above though
k ~ 1.5 ps® over 20 interior states. reasonably close to the ergodicity transition. This estimate for
To estimate flow rates for propyne using the results sum- T is also sensitive to high-order resonances, as weTithe
marized in section I, average values for the coupling terms are estimate forT obtained by retaining only cubic terms, to be
required. Off-diagonal anharmonicities for each mode of just below 1.
propyne are listed in ref 4. Bigwood and Gruebele have used We conclude that the ergodicity transition in propyne lies at
as an average over all combinations of modes a valukscf an energy very near that o#2 Still, even if the interior states
2.8 cntl. Values ofo are seen in ref 4 to vary between 3 and of propyne near 6600 cm are extended as the valde~ 7
10 for the range of total energies analyzed, and as an overallsuggests, flow to the interior would still be very slow due to
average over combinations of modes we wse6.4. The root- the sparsity of pathways to reach the interior. We recall that
mean-square frequency of the 15 oscillatoraigs = 1927 such sparsity is responsible for the 3 order of magnitude
cm1, which using eq 2.8 yields an estimate for the local density difference in rates between flow out of the;3dge state and
of statesDg. We assume that the coupling, is simply given the isoenergetic interior states. We may well have differences
by the direct resonant coupling,. Then using eq 2.11 for the  of this order or more for flow out of the12 state, and the
connectivities, we compute the transition paramé&tand flow isoenergetic interior states, for which we predict a rate using
rates using eqs 2.4 and 2.7, respectively. We find the transitioneq 2.7 of about 1.2 pd. A summary of results for propyne is
paramater to be about 40 for propyne using the parameters giveristed in Table 1.
above, so that states with energies near 9700'@re indeed Before completing our discussion of propyne, we mention
extended, and facile vibrational energy flow typically occurs. one issue concerning the application of our model to larger
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P(y) like molecules, for which the cubic coupling is systematically
Y 2 varied around its representative value of 5ém
V. Finite Size Considerations

The issue of finite molecular size arises in the context of the
1o local random matrix predictions of section Il, in that it imposes

an ultimate limit to the extent of state space available for energy

to flow. A sharp transition to global energy flow occurs strictly

only when the energetically available state space is infinite. Still,
0.1 0.2 we should bear in mind that the complete density of states of a

y moderate-size molecule is often comparable to the single-particle

Figure 3. Distribution of the dilution factoy given by eq 2.5, when state density of a macroscopic sample of metal, which does show
T=085 critical behavio® We now consider the extent to which the
picture of a crisp transition in the thermodynamic limit is
modified by the finite size of the available state space. Our
analysis is semiquantitative but provides an initial orientation
to the problem.

We have turned to the dilution factor to provide a measure
of the extent of mixing. The dilution factor is approximately
the inverse of the number of states participating in energy flow
and therefore vanishes at the ergodicity transition if the
vibrational state space is infinite. In finite systems, the dilution
factory reaches a minimum valug, as limited by the size of
She state space. We can estimate the minimum wahuees the

product ofpy(E), the global level density, andE), the average
renormalized golden rule rate of eq 2.7, whereby

organic molecules. The coupling scheme presented in section
IIA does not as yet distinguish between coupling of vibrational
motions in different parts of the molecule with coupling of
nearby vibrations, such as vibrational motion involving common
atoms. Locality of vibrational motion can arise through
formation of local mode&} which become ever more prevalent
in larger organic molecules. There is even evidence for some
locality in propyne, as suggested by the apparently somewhat
slower relaxation out of the combination bang + 2vs,
corresponding to CH stretches on opposite sides of propyne, a
compared to nearly isoenergetiey3® Such effects, which
could be significant in larger molecules, will of course lower
the connectivity now estimated by eq 2.11, thereby lowering
estimates for the transition paramei¢) and energy flow rates. -
A second molecule we consider in this section is thiophos- Ym = (fipy(E) k(E)) (5.1)
gene, SCCGl Vibrational mixing and relaxation properties of
thiophosgene were studied by Gruebtleho numerically From eq 5.1 we see how;, approaches zero as the molecule
solved a random matrix model parametrized by couplings and becomes larger. The average r&E) varies only with local
frequencies representative of SGCIMWe compare results of  couplings and the local density of statpgE), which grows as
this analysis with predictions of section Il. For energies around a polynomial in the nhumber of vibrational modis On the
12000 cmi! above the ground state, a characteristic cubic other handpgy grows exponentially wittN, so thatym becomes
coupling term isb; = 5 cm'2, and a representative value of exponentially smaller as the number of vibrational modes
is 6.5. The root-mean-square oscillator frequency over the six increases, indicating a rapid approach to a sharp transition with
vibrational modes is 657 cm. Putting these quantities into  the size of the molecule.
egs 2.9, 2.11, and 2.4, we find fo(E) a value of 0.85, which We can also use eq 5.1 to estimate the rah@eén the value
is very close to the critical valug&(E) = 1. In fact, possible of the transition parametdi(E) near the thermodynamic-limit
errors introduced by using crude statistical distributions (e.g., a critical valueT(E) = 1, over which the actual crossover to global
Lorentzian to describe the zero-order local density of states) asenergy flow in a given molecule occurs. In an infinite system
well as systematic error in the self-consistent theory would allow there is a sharp transition g = YO= 0; in a finite system
thiophosgene to be either somewhat above or below the quantunthere will be a crossover to global energy flow, which has been
ergodicity transition. reached, say, whey, = ¥y[I(>0), occurring whe(E) is near
Though still below the predicted transition, we expect mixing but not precisely at the infinite system transition value. Equation
of states in the state space to be relatively extensive WEn 5.1 indicates that the differene€T between the crossover value
= 0.85. We can make this precise by considering the dilution of T(E) and the critical valud(E) = 1 becomes exponentially
factor distributionPy(y), given by eq 2.5, aT = 0.85, which small with largerN, and the question then is how largd is
we plot in Figure 3. We see in the figure that the distribution for a molecule as small as thiophosgene. For the thiophosgene
rises steeply ag approaches 0, so that many states with very example atv12 000 cm? discussed abovey ~ 200 cm? and
small y are predicted even below the transition. Sinces using the estimate fdk of 2.8 ps?, we havey, ~ 3 x 1074
equivalent to the long-time survival probability of the initially from eq 5.1. Taking this value fot, the width of the crossover
excited state, decay to small values of the survival probability to global flow wherely{O= yp, is found using eq 2.6 to bAT
would often be observed, indicating facile energy flow to a large ~ 1074, so that the quantum ergodicity “transition” is indeed
number of states. Wheyis sufficiently small such that the close to the thermodynamic limit for a molecule even as small
participation number embraces the available state space, energyas SCCJ, supporting our picture of a relatively crisp transition
flow can be said to be global. For a molecule as small as $CCl for energy to flow globally throughout the vibrational space.
this possibility is not so improbable wheR(E) = 0.85, as Nevertheless, it is possible to observe rather extensive energy
discussed in the following section. Singes typically small, flow in relatively small molecules over a sizable portion of the
and for some statgsreaches its minimum value, a meaningful state space at values dfsmaller than this crossover value of
rate of energy flow can still be determined even if flow is not 1. This is because even whé&il> yy there is still a finite
always completely global. Using eq 2.7, we find the rate of fraction of states for whicly is predicted by eq 2.5 to be less
energy flow in thiophosgene at around 12 000 érto be 2.8 than ym and therefore globally mixed. For thiophosgene at
ps1, quite close to 1.7 pg reported in ref 9. We note also 12 000 cnt?, for example, we predict(E) = 0.85. Using eq
that close agreement has been obsei/edtween the dilution 2.5, we find that 6% of the states lie where< y,, and almost
factor distribution given by eq 2.5 and results for thiophosgene- 20% wherey < 10y, which still corresponds to mixing over a
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significant fraction of the available state space. The form  To determlnng\',{, o for given values ofy; andg,, we must
predicted forP(y) at T = 0.85 is shown in Figure 3. Sinog, find the combination of ways to add and to remove quanta from
gets smaller exponentially as the number of vibrational modes the N; andN; oscillators. It is always possible to add quanta
increases, the fraction of states for which energy flow is to the oscillators, but removing quanta from an oscillator
reasonably extensive below but near the ergodicity transition requires that that oscillator be already excited to at lggsanta.
becomes very much smaller for larger molecules. We have to therefore determine the probability that there are at
leastq quanta in any of thé&l; (N,) oscillators, given that there
VI. Concluding Remarks areq, (o) quanta distributed among them, and this will be done

In this article we have compared analytical expressions for below. We definen®(q) (m$¥(q)) as the number of ways to
vibrational mixing and flow rates derived from a local random removeq quanta fromN; (N2) oscillators wherg: (g2) quanta
matrix model of the vibrational Hamiltonian of moderate size are distributed among them and,(q') (mz(q')) as the number
polyatomics, with detailed computational results for several of ways to addy’ quanta to those of thid; (N2) oscillators from
organic molecules. The results presented above offer considerwhich g of the g; (g2) quanta available have not already been
able encouragement for applying these simple random matrixremoved. We can then exprelsg“h‘,)vQ as
predictions to energy flow among typical vibrational states of
moderate size organics containing four or more atoms. ResultsK
for formaldehyde compare favorably with available data
vibrational mixing. Energy flow rates predicted for propyne at {
about 9700 cm! above the ground state compare well with
those obtained from simulatichsf flow out of most states near
that energy.

We have also addressed effects of finite molecular size on Where{ } indicates averaging over all combinationsgpfand
the quantum ergodicity transition. The local random matrix G2 such thatNe = N1 + 20.N.. Computing KW NG IS
predictions derived thus far hold strictly in the thermodynamic furthermore broken down to computing the products
limit; in finite systems, global energy flow is still possible out 1)(a)mlu(b) and mz‘jf (c)mpy(d), which we turn to now.
of a finite fraction of states below the quantum ergodicity  To determmem )(a), we need information about the num-
transition, though the probability is seen to decrease rapidly with per of quanta in each of tHé; modes. We defina™")(q) as
the size of the molecule. This explains the extensive energy the average number of oscillators among Mitotal that are

(1
AN,Q

a;d

a+b+ct d=Q
(b—a)N; + 2(d—Cc)N,=AN;

i (8) my (0) MEP(c) My (A} g, q, (A2)

flow out of states of thiophosgeh& at energies somewhat
below those at which it is predicted to be ergodic.
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Appendix

In this Appendix we describe the counting procedure for the
2:1 oscillator system discussed in section Ill. While the

counting scheme discussed below is applicable to this specific

system, it is straightforward to generalize it to ang oscillator
system or to oscillator systems with more than two sets of
oscillators.

For convenience, we define the notatléﬁ“) o Which labels
the connectivityK by the polyad number of the initial state in
the superscriptAN; is the difference in value of the polyad
quantum numbers between the final and initial states,Qu=l

the distance in quantum number space. To lowest order in the

effective couplingyq (cf. eq 2.10), onlyK{g corresponding to
direct resonant transitions is required. Higher order terms

excited toq or more quanta, given that there apequanta of
excitation distributed among thé; modes. We then find that

min(@z,N1)
_ N;\fg, — 1
2 P J-1

mln(q1 Ni) th—2p

A1) =

1
LD IS N
(Ada)
=" 7) (A4b)
n(QlNl)(m)

mln(ql Ni) thi—mp
DDA
r=
N, —

B3 ")

With information about the average number of quanta per mode,
we can now computen®(a)my,(b). All possible ways to

—(Mm—-1)p—- 1)R§)m—l)

(A5a)

1-1)
+ir—li

(ASb)

corresponding to a respectively Iarger number of off-resonant remove a quanta fromN; oscillators must be considered:

transitions require information aboU( Q We compute
K(AN) (o averaging over all combinations q{ quanta of excita-
tion among the 1-oscillators (with frequencue®i) and g
quanta of excitation among the 2-oscillators, subject to the
polyad constrainN; = quN; + 20:N,. The number of ways to
arrangeq; quanta amondN; modes is

N,+0g,—1
@1:(q11 O )

The total number of states for a givemp,€p) pair is then®;0-.

(A1)

removing alla quanta from one oscillator, removiag— 1 from

one and 1 from any of the remaining; — 1 oscillators,
removinga — 2 from one and 2 quanta from any one of the
others, or 1 quantum from each of two of the remaining
oscillators, etc. All of these possibilities have to be counted to
determinem(lcﬂjl)(a)mlu(b). Let | be the number of oscillators
losing at least one quantum of excitation for any one contribu-
tion; thenb quanta will be added to the remainirg — |
oscillators. For example, for the four contributions for removing
a quanta listed abovel = 1, 2, 2, and 3, respectively.
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Accounting for all the contributions tan{®(a)my,(b), we gg Ié?l?lz?g;hD.DE:;Svi\tl)(e)zlr){neES’LP. Iﬁb Cgﬁg% ngﬁgggggé‘lgffé
arrive at the following algorithm (9) Gruebele, MJ. Phys. Chem1996 100, 12183.
(10) Clouthier, D. J.; Ramsay, D. Annu. Re. Phys. Chem1983 34,
a 31. Dai, H. L.; Korpa, C. L.; Kinsey, J. L.; Field, R. W. Chem. Phys.
_ _ 1985 82, 1688. Polik, W. F.; Guyer, D. R.; Moore, C. Hid. 199Q 92,
mi%(@)my,(b) = (N =h+b=1], 3453 ’ i
= b (11) McCoy, A. B.; Burleigh, D. C.; Sibert, E. L., l1J. Chem. Phys.
1991, 95, 7449.
-1 (12) Leitner, D. M.; Wolynes, P. Gl. Chem. Physin press.
ﬁ(ql’Nl)(a +1-— ) _ | (13) Field, R. W.; Coy, S. L.; Solina, S. A. Brog. Theor. Phys. Suppl.
1 ] Z "] (A6) 1994 116 143 and references therein.
) r=t (14) Leitner, D. M.; Wolynes, P. GPhys. Re. Lett. 1996 76, 216.
|J- (15) Mills, I. M. In Molecular Spectroscopy: Modern Resegrétao,
K. N., Matthews, C. W., Eds.; Academic: New York, 1972. Whetton, N.
a . . - . T.; Lawrence, W. DJ. Phys. Chem1989 93, 5377. Rashev, SChem.
wherel = 3 l;. Each product of binomial coefficients is one  Phys.1990 147, 221.

contribution tom(l‘ﬂ,l)(a)mlu(b). The first coefficient givesn,- (16) A model of the same structure has been proposed to describe a
semiclassical mechanism known as dynamical tunneling in the work of

(b), where the number of oscillators to which quanta can be |jg)er2s
added isN; — I. Values oflj in eq A6 are determined as (17) Madsen, D.; Gruebele, M. SubmittedYoChem. Phys
follows: For the first product of binomial coefficientk; is (18) Leitner, D. M.; Wolynes, P. GChem. Phys. Letfl996 258 18.

. ; - 10) Thouless, D. JPhys. Rep1974 13, 93.
given by the closest integer less than or equal/ta + 1 — ), Ezog Stowart & M Mebonad. J. T Ghem. Phys1083 78, 3907.

andlj=i is given by the closest integer less than or equabto ( (21 Perry, D. SJ. Chem. Phy<1993 98, 6665. Bethardy, G. A.; Perry,
— z};liljr(a +1-—j)(a+ 1—j). The first product accounts ?95»5- Jl-oghsegﬁphyslg% 99, 9400. Go, J.; Perry, D. S. Chem. Phys.
for the first Contri_bUtion _tomg.c(‘jl)(a)mlu(b)- _The sum overk (22) Bigwood, R.; Gruebele, MACH Models in ChemsitrySymposium
serves to change if possible any values;df the products of in Print, in press.

Y

J

the binomial coefficients before changing the indéxthe first (23) Stuchebrukhov, A. ASa. Phys. JETPL986 64, 1195.
sum. Values ofj are systematically lowered for gllexceptj 175224) Stone, J.; Thiele, E.; Goodman, M. F..Chem. Phys1981, 75
= a, keepingli = 1. The lowering ofij continues until; = 1, (25) Schofield, S. A.; Wolynes, P. G. Chem. Phys1993 98, 1123.

and alll;= exceptl, are zero. Then the indéxs increased by Schofield, S. A.; Wolynes, P. Gl. Phys. Chem1995 99, 2753.

1, and thd; are computed as for the first product. An identical _(26) Schofield, S. A.; Wolynes, P. G.; Wyatt, R. Ehys. Re. Lett.
! P P 1995 74, 3720. Schofield, S. A.; Wyatt, R. E.; Wolynes, P. &.Chem.

calculation is carried out fom(z‘ﬂf)(c)mm(d) in order to com- Phys.1996 105, 940.
plete eq A2. (27) Logan, D. E.; Wolynes, P. G. Chem. Phys1986 85, 937.
(28) Heller, E. JJ. Phys. Chem1995 99, 2625.
(29) Go, J.; Cronin, T. J.; Perry, D. &em. Phys1993 175 127.
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