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The theory of local random matrix models has provided a way for understanding many aspects of quantum
ergodicity and energy flow in molecules. In this paper quantitative results are presented for a random matrix
model that yields analytical expressions for the degree of vibrational mixing and flow rates in polyatomics
in terms of a small number of parameters. The results of these generally applicable expressions are compared
with large scale computation on energy flow in several organic molecules studied experimentally:
formaldehyde, thiophosgene, and propyne. We show these systems are respectively below, at, and significantly
above the quantum ergodicity transition. Effects of finite molecular size on the quantum ergodicity transition
are also discussed.

I. Introduction

The central role of intramolecular energy flow in chemical
kinetics and photochemistry has long motivated experimental,1

computational,2-4 and theoretical studies5 of vibrational relax-
ation in polyatomics. Large scale simulations and experimental
studies on a number of small molecules have provided a wealth
of detailed information about vibrational mixing and energy
transfer. However, despite notable successes on rather large
molecules,2-4 detailed analysis of the complete vibrational
Hamiltonian of a large polyatomic is still a very demanding
undertaking. Fortunately, such large scale computation is
apparently not needed for understanding a great deal about the
qualitative nature of intramolecular energy flow or, as we shall
show here, even to predict the extent and rates of flow to modest
accuracy. Alternative approaches6,7 to large scale computation
treat the oscillator energies and local couplings statistically, the
distributions of which are parametrized to suit the harmonic
vibrational spectrum and anharmonicities of a particular poly-
atomic. The resulting local random matrix ensemble yields
analytical expressions predicting vibrational mixing, rates of
energy flow, and the location of the quantum ergodicity
transition between localized and extended states.
In this article, we compare predictions for vibrational energy

flow and localization obtained from local random matrix models
with results of computational studies4,8,9 on several organic
molecules. Our results are in some sense meant to serve as an
illustration of a general approach for analyzing specific systems.
The systems chosen were those for which appropriate data for
comparison could be found in the literature. The molecules
we consider are formaldehyde, propyne, and thiophosgene,
which serve as examples of how to analyze both vibrational
mixing on the localized side and flow rates on the extended
side of the transition, as well as behavior near the transition.
The formaldehyde molecule has long been the subject of
extensive experimental analysis,10 and recent computational
studies provide additional results against which predictions of
the analytical theory can be compared. Formaldehyde is also
interesting because the polyad quantum number is approximately
conserved at low to moderate energies,8,11 so that a more
elaborate counting scheme than that otherwise adopted12 is
required to determine local level densities for the matrix model.

This special treatment, which is detailed in the Appendix, may
be useful in other cases where the polyad number is ap-
proximately conserved.13 Finally, because the local random
matrix predictions strictly apply in the thermodynamic limit, it
is necessary to consider effects of finite size when making
predictions about a specific molecule. We examine the extent
to which finite size effects lead to the possibility of large scale
but not necessarily ergodic flow over the energetically available
state space for some states strictly below the quantum ergodicity
transition. The probability of such extensive flow is seen to
decrease rapidly as the size of the molecule considered increases.
The organization of this article is as follows: The local

random matrix model and its predictions for the location of the
transition and for vibrational mixing and energy flow rates are
summarized from previous work in section II. In section III
we examine a case very convenient for describing polyatomics,
a 2:1 oscillator model, where a fraction of the oscillator
frequencies are about twice those of the others. Here we
compare predictions for vibrational mixing with computational
results8 for formaldehyde. In section IV we compare rates of
flow with numerical results for propyne,4 which is well above
its transition, and thiophosgene,9 which is near its ergodicity
transition. Finite size effects on the quantum ergodicity
transition are discussed in section V.

IIA. Model

We consider a local random matrix model of the vibrational
HamiltonianH ) H0 + V,

wherem ) {m1
(, m2

(, ...}. The zero-order HamiltonianH0

consists of a sum over the energies of the nonlinear oscillators,
where each oscillator has frequencyωR(nR) ) p-1∂εR(nR)/∂nR,
and nonlinearity,ω′R(nR) ) p-1∂ωR(nR)/∂nR, and the number
operator is defined byn̂R ) bR

†bR. The set of zero-order
energies{εR}, and coupling terms inH, {Φm}, are treated as
random variables. The Hamiltonian of eq 2.1 includes direct
resonant coupling terms of arbitrary order. Such high-orderX Abstract published inAdVance ACS Abstracts,December 15, 1996.
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terms are in general crucial in locating the transition between
localized and extended states.12,14 Defining p ) ∑R(mR

+ +
mR

-), we assume that the{Φm} decay exponentially withp
as4,15-17

whereΦ3 is a cubic coupling term. In a given molecule,Φ3

can take on values of the order 0.1-10 cm-1; realistic values
of σ typically range between 3 and 10.4 A good approximation
to the off-diagonal matrix elements ofH keeps only the largest
contributions generated by the coupling of eqs 2.1b and 2.2.
Defining the distanceQ ) ∑R|n′R - nR| in quantum number
space, wherenR is the number of quanta in modeR of one state
andn′R the number of quanta in the same mode of the other,
matrix elements connecting two states a distanceQ from one
another are approximated by

whereM is the average number of quanta per mode. Equation
2.3 approximatesVQ to highest order inσ. While we neglect
them here, contributions of terms lower order inσ have been
evaluated in ref 17. The approximation toVQ given by (2.3b)
follows from eq 2.2, since the lowest order contributions toV1
andV2 come from cubic and quartic terms, respectively, so that
V1 ∼ V3 andV2 ∼ V4. Because of large variation inΦ3 andσ
for a given molecule, we expect a large dispersion inVQ for
anyQ. Nevertheless, as we shall see below, coupling matrix
elements enter into theoretical preditions for vibrational mixing
and flow rates only as averages. The vibrational Hamiltonian
H is thus parametrized by sets of frequencies{ωR}, nonlineari-
ties{ω′R}, cubic coupling terms{Φ3};M, the number of quanta
per mode; andσ, the rate of exponential decrease of higher order
coupling terms.

IIB. Local Random Matrix Predictions

Analysis of the Hamiltonian introduced in section IIA has
led to many predictions relevant to vibrational mixing and flow,
details of which are provided in refs 7, 12, and 18. The aim of
the analysis was to determine self-consistently rates of energy
flow out of a state|j〉 of the vibrational space, an eigenstate of
the uncoupled oscillator HamiltonianH0. Because the couplings
to other states of the vibrational space defined in section IIA
depend on the distanceQ from |j〉 in quantum number space,
the state space is organized into tiers of states, where the location
of each tier corresponds to its distanceQ from |j〉. We have
assumed in our treatment a statistically homogeneous structure
for the vibrational space; i.e., statistically, the couplings and
local densities of states coupled to states of one tier are
equivalent to those coupled to states of any other tier if each of
the states is close in energy. The approximation of a homo-
geneous structure should be valid for most states of the
vibrational space that are close in energy, so long as all that
energy is not concentrated into one or very few of the vibrational
modes. States where energy is concentrated in very few modes
lie at the edge of the vibrational space. For such “edge” states,
flow often proceeds through a sequence of statistically inho-
mogeneous tiers to the interior, due to a sparsity of flow
pathways for flow from the edge. We have recently treated
the problem for flow out of edge states in a model oscillator
system.14 Here we focus mostly but not exclusively on
vibrational mixing and energy flow over the vast majority of
states of the vibrational space that occupy the interior. Whether

or not we obtain a nonzero flow rate in the self-consistent
analysis depends on the local coupling and the local densities
of states coupled to|j〉. This information is contained in a single
parameter,T, which is defined by eq 2.4. For values ofT less
than 1, the self-consisent theory yields a vanishing flow rate,
while finite flow rates are found forT > 1. The quantum
ergodicity transition thus lies at the critical valueT ) 1. In
addition to the location of the quantum ergodicity transition
separating localized from extended states, the degree of
vibrational mixing on the localized side of the transition, and
rates of energy flow on the extended side are all given by
analytical expressions derived from the model, each of which
is determined by a few parameters characterizing the spectral
dispersion and anharmonicities of the particular polyatomic
studied. In this subsection we review results previously
obtained7,12,18 for the local random matrix model ofH.
The central parameter determining the extent of vibrational

mixing is the transition parameter, defined as

The transition parameter is expressed in terms of the average
effective coupling,〈|ψQ|〉, to states a distanceQ away. The
effective coupling defined by eq 2.10 incorporates both the direct
couplingVQ to these states and off-resonant contributions. If
we choose to neglect the latter, thenψQ ) VQ given by eq 2.3.
Apart from the local effective coupling, the local level density
is required to determine the transition parameter. The local
density of states that lie a distanceQ away isKQDQ(E), where
KQ is the connectivity andDQ(E) is the probability of there being
a state at energyE. Each parameter will be determined below
for oscillator systems characteristic of moderate size to large
polyatomics. The sum in eq 2.4 refers to direct coupling to all
sets of states a distanceQ in quantum number space from the
initial state.
According to the self-consistent theory, the transition between

localized and extended states is found whereT(E) ) 1. When
T(E) < 1, states are localized. The degree of localization is
quantified by the inverse participation ratio,19 y, also called the
dilution factor, used by molecular spectroscopists as a measure
of vibrational mixing.20,21 The dilution factor is defined asy
) ∑λ|cjλ|4, wherecjλ ) 〈λ|j〉, with |j〉 an eigenstate ofH0 and
|λ〉 an eigenstate of the coupled oscillator HamiltonianH. The
dilution factory is equivalently the long-time survival probability
of state|j〉 and is determined experimentally by the sum of the
squares of the relative intensities of the spectrum. We have
shown18 that a close approximation to the distribution ofy can
be expressed in terms ofT(E) as

A number of studies on the approach to strongly mixed or
extended vibrational states consider the average dilution factor,
〈y〉, given by

whereDp is the parabolic cylinder function. Recent numerical
studies by Bigwood and Gruebele on a local random matrix
model of thiophosgene9,22 support the validity of eq 2.5 for the
dilution factor distribution.

Φm ) Φ3σ
3-p (pg 3) (2.2)

VQ ) Φ3σ
3-QMQ/2, Qg 3 (2.3a)

VQ ) Φ3σ
1-QMQ/2+1, Q< 3 (2.3b)

T(E) ≡ (2π/3)(∑
Q

KQ〈|ψQ|〉DQ(E))
2 (2.4)

Py(y) ) γy-1/2(1- y)-3/2 exp(- πγ2y
1- y) (2.5a)

γ ) ( 32π
T(E)

1- T(E))1/2 (2.5b)

〈y〉 )∫01yPy(y) dy) eπγ2/2D-2(x2πγ2) (2.6)
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WhenT(E) is greater than 1, eigenstates ofH at energyE
are extended, enabling facile energy flow throughout the
vibrational state space. The theory predicts a singular critical
behavior for the flow rates very near the transition. Above the
transition region, an estimate for the rate,k(E), of flow out of
a typical state ofH at energyE is given by12

where eq 2.7 is the average renormalized golden rule estimate
for the rate. A related but not identical result for the damping
rate of an excited mode coupled to a bath of oscillators has
been given by Stuchebrukhov23 (see also ref 24).
Equation 2.7 must be distinguished from the usual golden

rule expression, for whichDQ(E) is replaced by the zero-order
density. This distinction becomes most apparent at high
coupling, whereDQ(E) varies inversely with the coupling (cf.
eq 2.8); for large couplings the energy flow rate then varies
linearly with coupling rather than quadratically.7,12 In fact, linear
variation of flow rates with large coupling is only one feature
of vibrational energy flow in polyatomics that departs from the
traditional assumptions. Schofield and Wolynes25 have argued
that the locality of couplings allows enhanced returns to the
initial state so that the survival probability decays in local
random matrix models as a power law rather than exponentially
at long times. Several computational studies have reported such
power law decays and linear rate dependence with coupling.4,9,26

In order to estimate the extent of vibrational mixing or rates
of flow, we need to determine the values of three parameters
as a function of the distanceQ in quantum number space: the
effective coupling,ψQ; the connectivityKQ; and the local density
of statesDQ. An analytical expression forDQ is obtained
assuming that the distribution of states ofH0, the uncoupled
oscillator Hamiltonian, a distanceQ from a given state is
described by a Lorentzian distribution with a width characteristic
of the dispersion in oscillator frequencies. In this way an
approximation toDQ(E)12 is found to be

whereVhQ is the typical, or average, value ofVQ. The widthλQ
depends on the oscillator frequencies, which we represent with
the root-mean-square,ωrms, of the set of oscillator frequencies,
{ωR}, and should grow withQ asQ1/2, so we setλQ ) Q1/2pωrms.
Below and near the transitionDQ(E)εj) can be adequately
approximated as (p ) 1)

which is just the zero-order density. Comparing eqs 2.4 and
2.8, we observe that eq 2.9 is reasonable for values ofVhQ
satisfyingVhQ j KQ

1/2VhQ,c, whereVhQ,c is the value ofVhQ at the
transition. For larger values ofVhQ, D(E) varies inversely with
∑QKQVhQ2, whereby rates vary linearly with coupling.
The effective couplingψQ can in many cases be approximated

by the direct couplingVQ given by eq 2.3. However, at low
energies off-resonant contributions can modifyT(E) signifi-
cantly. A mean-field treatment of off-resonant terms adopted
in determiningψQ is given in ref 12. The result can be most
conveniently represented diagrammatically27 as follows:

The interpretation of each diagram, which from left to right

represents terms of successively higher order, is as follows:
Each segment of any diagram is associated with〈Vq〉 and each
filled vertex withKq〈(∆Eq)-1〉, where∆Eq is the level spacing
to states a distanceq from the previous vertex. A sum overq
at each filled vertex, under the constraint that the total quantum
number change isQ, is implicit in each diagram. The first
diagram, then, represents direct coupling between two states
and is assigned the valueVQ. The second term involves
a transition via one intermediate state and represents
∑q〈Vq〉〈(∆Eq)-1〉〈Vq′〉, whereq + q′ ) Q or |q - q′| ) Q. We
note that in the extended domain and when couplings become
large, all diagrams but the first one provide only very small
contributions toψQ, since, just likeDq above,〈(∆Eq)-1〉 becomes
smaller with |Vq|. A reasonable estimate for〈(∆Eq)-1〉 is to
use the average of the inverse spacing of the uncoupled
intermediate states whenVQ j KQ

1/2VQ,c. When the coupling
is large enough such thatVQ J KQ

1/2VQ,c, one can set〈(∆Eq)-1〉
∼ (∑qKq

1/2|Vq|)-1, and the high-order terms can be thereby
neglected.
The connectivityKQ to states a distanceQ away is easily

estimated for a large numberN of coupled oscillators. An
adequate estimate forKQ has been derived in ref 12 and is given
by

whenN is large andQ is less than≈2N1/2, which is generally
sufficient for locatingT(E) and estimating flow rates. If there
are any selection rules that would modify the number of
accessible states, a more specific counting procedure is required
to estimateKQ. In the following section we treat an example
where the polyad quantum number is approximately conserved.

III. Vibrational Mixing among 2:1 Oscillators

In this section we examine a particular realization of the
model described in section II. We consider a system ofN
coupled nonlinear oscillators, whereN1 of theN oscillators have
frequencies with averageωj 1, while the average of theN2 ) N
- N1 other oscillator frequencies isωj 2, whereωj 2 ≈ 2ωj 1 over
the range of energy we consider. Because of the 2:1 resonance
structure, the polyad quantum numberNt is approximately
conserved over these energies. For a 2:1 oscillator system the
polyad number is given byNt ) q1N1 + 2q2N2, whereq1 (q2)
is the total number of quanta among theN1 (N2) oscillators.
This particular oscillator system mimics certain polyatomics in
significant respects. Often stretch:bend frequency ratios are
approximately 2:1; a particular example is formaldehyde, where
each ofN1 ) 4 modes has frequency≈1500 cm-1, while the
frequencies of the other two modes are about 3000 cm-1. We
consider formaldehyde in more detail below.
We begin by determining the location of the transition

between localized and extended states in this 2:1 oscillator
system. For this we need to computeT(E) using eq 2.4, which
requires information about the coupling incorporated inψQ, the
connectivityKQ, and local level densityDQ(E) of states that lie
a distanceQ from a given excited state. To lowest order in the
coupling,ψQ ) VQ given by eq 2.3; to compute higher order
terms, information is required about the connectivities to states
participating in off-resonant transitions between the initial and
final states.
To determineKQ, we need first to estimate the number of

quanta in each mode, broken down into the number of quanta
in each of theN2 oscillators with frequency≈ωj 2, and in each
of the remainingN1 oscillators. With this information the
number of ways to remove quanta from the oscillators for a
given polyad quantum numberNt can be calculated; then the

k(E) ) 2πp-1∑
Q

KQ〈|ψQ
2|〉DQ(E) (2.7)

DQ(E)εj) ) 2

π[λQ + (λQ
2 + 4∑Q KQVhQ

2)1/2]
(2.8)

DQ(E)εj) ≈ (πQ1/2ωrms)
-1 (2.9)

KQ≈ (2N)Q/Q! (2.11)
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combination of ways to move a distanceQ in quantum number
space while conservingNt is counted. This calculation would
be sufficient for determiningT(E) if we approximatedψQ by
the first term in eq 2.10. However, for the other terms, we
also need to count the number of ways to make off-resonant
transitions, so that the connectivity to values of higher and lower
Nt must also be determined. Details of the calculation ofKQ

are provided in the Appendix.
In Figure 1 we illustrate results comparing the location of

the transition using eq 2.4 when first- and second-order terms
in ψQ are present, with those whereψQ ) VQ. For several cases
we plot ln φ̃ ≡ ln(Φ3M3/2ωrms

-1), whereφ̃ is the scaled cubic
coupling, versus lnσ at their critical values corresponding to
the quantum ergodicity transition atT ) 1. The oscillator
frequencies have been fit to those of formaldehyde,8 whereωj 1

) 1445 cm-1, ωj 2 ) 2975 cm-1, andωrms ) 192 cm-1. The
number of modes isN ) 6 (formaldehyde), 18, and 48; the
ratio ofN1 toN2 is 2:1; and the polyad number isNt ) 8. Figure
1 illustrates the role of off-resonant terms in locating the
quantum ergodicity transition using parameters representative
of organic molecules. We observe in the figure that the role of
higher order terms in eq 2.10 becomes more significant as the
ratio N:Nt increases, which reflects the greater role of off-
resonant terms when the number of quanta per mode becomes
small. This trend is not unexpected, since the inverse level
spacing〈(∆Eq)-1〉 of off-resonant states contributes to all terms
in ψQ except the first one. Due to sign cancellation〈(∆Eq)-1〉
will generally be small unless the total energy is very low, since
only at very low energy are there more off-resonant levels of
higher energy that are not canceled by those lower in energy.
We moreover observe the effect of higher order terms to be
most significant for largeσ, which is consistent with our
expectation that smallσ favors direct exchange, while largeσ
makes vibrational superexchange a possible energy flow mech-
anism.14 We mention that the results presented in Figure 1 do
not change much upon changing the ratio ofN1:N2. However,
the results are quite different in the absence of 2:1 resonances.
In the case where only 1:1 resonances are available, higher order
terms in eq 2.10 are required for saturation of the transition
curves with largeσ.14
We are finally in a position to make direct comparisons with

results for formaldehyde. Sibert and co-workers8,11 computed
average values of the participation numbers for formaldehyde
for polyad numbers up to 8 (≈12 000 cm-1) with a detailed
potential model. They went on to study also a random matrix
model mimicking the vibrational Hamiltonian of formaldehyde

as part of a more general study of rotation-vibration mixing
in formaldehyde, finding very close agreement between the
participation numbers obtained from their formaldehyde Hamil-
tonian and the corresponding matrix ensemble. We now
compare results of ref 8 for the average participation number,
with the inverse of the average dilution factor predicted by eq
2.6, bearing in mind that these two averages are not identical.
In our case, we can simply insert representative values for
formaldehyde by adopting a 2:1 system whereN1 ) 4 andN2

) 2. Formaldehyde at a given polyad numberNt then appears
as a point on a plot like Figure 1. If we plot the same
parameters,φ̃ and σ, as in Figure 1 at several values of the
polyad numberNt, we can observe how formaldehyde ap-
proaches the ergodicity transition withNt. Such a plot is
presented in Figure 2. Each surface in the figure corresponds,
from top to bottom, to successively larger values of the average
dilution factor, 〈y〉, in the range 0 (the transition) to 1, and
therefore to smaller values ofT(E) (cf. eq 2.6). The positions
of formaldehyde in the figure were determined by usingΦ3 )
15.2 cm-1, which we have estimated from the data in ref 8,
usingM ) 0.9 forNt ) 6, and by settingσ ) 10, which implies
that cubic terms essentially locate the transition in the simulated
random matrix model.30 For example, the value ofT obtained
at Nt ) 8 is 0.31, and from eq 2.6, we find a value of〈y〉 )
0.30 for the average dilution factor. This compares well with
0.11, the value of the inverse of the average participation number
at Nt ) 6 obtained in ref 8. AtNt ) 4 and 6, we findT for
formaldehyde to be 0.01 and 0.08, respectively, yielding 0.83
and 0.55 for the average dilution factors, respectively. These
can be compared with 0.56 and 0.23, respectively, the inverse
of the average participation numbers reported in ref 8, where
again we find quite reasonable agreement. We moreover
estimate thatT ≈ 1 whenNt ) 10, as seen in Figure 2, so that
for polyad numbers larger than 10 vibrational energy flow in
formaldehyde is predicted to be global.
It is worthwhile pointing out that reasonably similar results

for T are obtained even if information about connectivities to
sets of oscillators with different values of the polyad quantum
number is neglected. If we admit coupling to all states a
distanceQ away, regardless of their value ofNt, then eq 2.11
can be used to estimate the connectivity. Then using eq 2.9

Figure 1. Transition curves separating localized from extended regions
for 2:1 oscillator systems, where the ratio ofN1 to N2 is 2:1. The total
number of oscillators is, from top to bottom,N ) 6, 18, and 48
oscillators; the polyad number isNt ) 8. Plotted is lnφ̃, whereφ̃ ≡
Φ3M3/2ωrms

-1 is the scaled cubic coupling, and lnσ, whereσ is the
exponential decrease in magnitude of higher order resonant coupling
terms. Solid curves represent estimates forT(E) ) 1 whenψQ ) VQ,
and dashed curves locate the transition whenψQ is computed using
the two lowest order terms of eq 2.11.

Figure 2. Surfaces representing, from top to bottom, values ofφ̃, σ,
andNt when the average dilution factor〈y〉 ) 0 (the transition), 0.4,
and 0.8, for a 2:1 oscillator system whereN1 ) 4 andN2 ) 2. φ̃ is the
scaled cubic coupling, andσ is the exponential decrease in magnitude
of high-order resonant coupling terms.Nt is the polyad number defined
by Nt ) q1N1 + 2q2N2, whereq1 (q2) is the total number of quanta
among theN1 (N2) oscillators. Using representative values for form-
aldehyde,8 values of〈y〉 are found to be 0.83, 0.55, 0.30, and 0.05
respectively at polyad numbersNt ) 4, 6, 8, and 10, indicated by the
circles in the figure. The vertical gray lines have been drawn in for
orientation. Note that curves connecting the integral values ofNt are
only a guide.
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for the local density of states, where nowωrms is the root-mean-
square frequency of all the oscillators, we findT ) 0.48 forNt

) 6, giving an average dilution factor of 0.20; whileT ) 1.2
whenNt ) 8, suggesting energy flow in this polyad would be
already largely ergodic if we could ignore the polyadic
constraint.

IV. Polyatomic Molecules

The case of formaldehyde illustrates how the theory can be
applied when an approximately conserved quantity, the polyad
quantum number, is explicitly treated. The constraint of polyad
numbers enters into estimates for the local level densities, for
which a special counting procedure was adopted. This may be
easily generalized to other cases when faced with similar
selection rules. For many moderate size organic molecules (or
other polyatomics generally) a simpler approach to determining
the local level density is possible, whereby the connectivityKQ

can be estimated directly from eq 2.11. In the following, we
use the simpler approach to estimate rates of vibrational energy
flow in two examples, propyne and thiophosgene. These
systems have been studied computationally by Gruebele and
co-workers,4,9 so we can study the analytic results without
concern about modeling the energy surface. We assume
throughout that the states from which energy flow commences
are typical, since as discussed in section IIB action space is not
entirely homogeneous, in particular near the edge of the
vibrational space. While flow out of all coupled states at energy
E is predicted to be global when the transition parameterT(E)
is greater than 1,14 rates of flow out of special states may not
be typical. Flow out of edge states, where excitation is located
in only one or very few modes, is in particular not expected to
exhibit flow rates that are typical of those of most isoenergetic
“interior” states due to the sparsity of flow pathways following
excitation.1-3 This leads to a specific pathway mechanism often
involving dynamical tunneling.3,28 These edge states are in
many cases the easiest to interrogate experimentally so they
have received considerable attention in the laboratory.
Our first example is propyne, which has been the subject of

intensive experimental29,31,32and computational4,33 investigation.
Laboratory experiments show that the second overtone of the
acetylenic CH stretch (3ν1) decays at a rate of about 3 ns-1.32

In a computational analysis of propyne, a flow rate of≈3 ns-1
out of the same edge state was also observed.4 Bigwood and
Gruebele moreover computed energy flow rates for a number
of isoenergetic interior states, finding that flow out of interior
states at this energy of about 9700 cm-1 is considerably faster
than flow out of the acetylenic stretch. In particular, Bigwood
and Gruebele’s computations revealed an average flow rate of
k ≈ 1.5 ps-1 over 20 interior states.
To estimate flow rates for propyne using the results sum-

marized in section II, average values for the coupling terms are
required. Off-diagonal anharmonicities for each mode of
propyne are listed in ref 4. Bigwood and Gruebele have used
as an average over all combinations of modes a value ofΦh 3 )
2.8 cm-1. Values ofσ are seen in ref 4 to vary between 3 and
10 for the range of total energies analyzed, and as an overall
average over combinations of modes we useσ ) 6.4. The root-
mean-square frequency of the 15 oscillators isωrms ) 1927
cm-1, which using eq 2.8 yields an estimate for the local density
of statesDQ. We assume that the couplingψQ is simply given
by the direct resonant couplingVQ. Then using eq 2.11 for the
connectivities, we compute the transition parameterT and flow
rates using eqs 2.4 and 2.7, respectively. We find the transition
paramater to be about 40 for propyne using the parameters given
above, so that states with energies near 9700 cm-1 are indeed
extended, and facile vibrational energy flow typically occurs.

The rate of energy flow is found to be≈4.8 ps-1, reasonably
close to the result of about 1.5 ps-1 obtained by Bigwood and
Gruebele in their large-scale computation.
We mention that the value forT obtained from eq 2.4 is quite

sensitive to the presence of relatively high-order resonant
coupling terms in the propyne Hamiltonian. For example, we
could estimateT by retaining only cubic terms, which amounts
to truncating eq 2.4 atQ ) 3. This estimate forT, T3, is then
T3 ≈ 3.3, which is very close to the transition value of 1. The
sensitivity of T(E) to higher-order resonances in propyne is
consistent with our previous observation concerning the general
role of high-order direct resonant coupling terms in locating
the ergodicity transition in large polyatomics.12,14 Above the
transition region, however, energy flow rates depend largely
on low-order terms.12 For example, in propyne near 9700 cm-1

we find a rate of 3.4 ps-1 using only cubic terms, which is not
very different from our predicted rate with high-order terms
included. The important contribution of high-order resonances
to flow rates enters in only at higher energies.
Spectroscopic studies suggest that the treshold to energy flow

in propyne should lie at an energy not very much below 3ν1.31,32
Energy flow out of the 2ν1 state is at best very much slower; in
the absence of Coriolis coupling the 2ν1 propyne spectrum
reveals no vibrational relaxation. Whether or not energy can
flow out of the 2ν1 state to states of the interior depends on
whether the isoenergetic interior states are extended or localized.
One recent computational study of propyne suggests there is
no flow to the interior,33 though this study adopted only low-
order resonant coupling terms in the Hamiltonian, and we have
seen that the existence of extended states rests to a large extent
on higher order resonances. We can use eq 2.4 to estimate the
value ofT(E ≈ 6600 cm-1) for propyne. We adopt again the
propyne parameters provided in ref 4 and adjustM, the average
number of quanta per mode, for propyne at around 6600 cm-1

to be about two-thirds its value for propyne near 9700 cm-1.
We thereby obtain estimates for the coupling matrix elements
using eq 2.3. We then find for the transition parameter at
energies near 2ν2 a value ofT ≈ 7.0, which lies above though
reasonably close to the ergodicity transition. This estimate for
T is also sensitive to high-order resonances, as we findT3, the
estimate forT obtained by retaining only cubic terms, to be
just below 1.
We conclude that the ergodicity transition in propyne lies at

an energy very near that of 2ν1. Still, even if the interior states
of propyne near 6600 cm-1 are extended as the valueT ≈ 7
suggests, flow to the interior would still be very slow due to
the sparsity of pathways to reach the interior. We recall that
such sparsity is responsible for the 3 order of magnitude
difference in rates between flow out of the 3ν1 edge state and
the isoenergetic interior states. We may well have differences
of this order or more for flow out of the 2ν1 state, and the
isoenergetic interior states, for which we predict a rate using
eq 2.7 of about 1.2 ps-1. A summary of results for propyne is
listed in Table 1.
Before completing our discussion of propyne, we mention

one issue concerning the application of our model to larger

TABLE 1: Estimates for the Transition Parameter, T, and
Energy Flow Rates among Interior States of Propyne, Using
Results of the Local Random Matrix Model Summarized in
Section IIa

energy (cm-1) T T3 rate (ps-1) rate in ref 4

3400 0.4 0.1
6600 7 1 1.2
9700 40 3.3 4.8 1.5

a T3 is an estimate forT obtained by truncating eq 2.4 atQ ) 3 (see
text). The energies listed lie close to those ofν1, 2ν1, and 3ν1.
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organic molecules. The coupling scheme presented in section
IIA does not as yet distinguish between coupling of vibrational
motions in different parts of the molecule with coupling of
nearby vibrations, such as vibrational motion involving common
atoms. Locality of vibrational motion can arise through
formation of local modes,34 which become ever more prevalent
in larger organic molecules. There is even evidence for some
locality in propyne, as suggested by the apparently somewhat
slower relaxation out of the combination bandν1 + 2ν6,
corresponding to CH stretches on opposite sides of propyne, as
compared to nearly isoenergetic 3ν1.35 Such effects, which
could be significant in larger molecules, will of course lower
the connectivity now estimated by eq 2.11, thereby lowering
estimates for the transition parameterT(E) and energy flow rates.
A second molecule we consider in this section is thiophos-

gene, SCCl2. Vibrational mixing and relaxation properties of
thiophosgene were studied by Gruebele,9 who numerically
solved a random matrix model parametrized by couplings and
frequencies representative of SCCl2. We compare results of
this analysis with predictions of section II. For energies around
12 000 cm-1 above the ground state, a characteristic cubic
coupling term isΦh 3 ) 5 cm-1, and a representative value ofσ
is 6.5. The root-mean-square oscillator frequency over the six
vibrational modes is 657 cm-1. Putting these quantities into
eqs 2.9, 2.11, and 2.4, we find forT(E) a value of 0.85, which
is very close to the critical valueT(E) ) 1. In fact, possible
errors introduced by using crude statistical distributions (e.g., a
Lorentzian to describe the zero-order local density of states) as
well as systematic error in the self-consistent theory would allow
thiophosgene to be either somewhat above or below the quantum
ergodicity transition.
Though still below the predicted transition, we expect mixing

of states in the state space to be relatively extensive whenT(E)
) 0.85. We can make this precise by considering the dilution
factor distributionPy(y), given by eq 2.5, atT ) 0.85, which
we plot in Figure 3. We see in the figure that the distribution
rises steeply asy approaches 0, so that many states with very
small y are predicted even below the transition. Sincey is
equivalent to the long-time survival probability of the initially
excited state, decay to small values of the survival probability
would often be observed, indicating facile energy flow to a large
number of states. Wheny is sufficiently small such that the
participation number embraces the available state space, energy
flow can be said to be global. For a molecule as small as SCCl2,
this possibility is not so improbable whenT(E) ) 0.85, as
discussed in the following section. Sincey is typically small,
and for some statesy reaches its minimum value, a meaningful
rate of energy flow can still be determined even if flow is not
always completely global. Using eq 2.7, we find the rate of
energy flow in thiophosgene at around 12 000 cm-1 to be 2.8
ps-1, quite close to 1.7 ps-1 reported in ref 9. We note also
that close agreement has been observed22 between the dilution
factor distribution given by eq 2.5 and results for thiophosgene-

like molecules, for which the cubic coupling is systematically
varied around its representative value of 5 cm-1.

V. Finite Size Considerations

The issue of finite molecular size arises in the context of the
local random matrix predictions of section II, in that it imposes
an ultimate limit to the extent of state space available for energy
to flow. A sharp transition to global energy flow occurs strictly
only when the energetically available state space is infinite. Still,
we should bear in mind that the complete density of states of a
moderate-size molecule is often comparable to the single-particle
state density of a macroscopic sample of metal, which does show
critical behavior.36 We now consider the extent to which the
picture of a crisp transition in the thermodynamic limit is
modified by the finite size of the available state space. Our
analysis is semiquantitative but provides an initial orientation
to the problem.
We have turned to the dilution factor to provide a measure

of the extent of mixing. The dilution factor is approximately
the inverse of the number of states participating in energy flow
and therefore vanishes at the ergodicity transition if the
vibrational state space is infinite. In finite systems, the dilution
factory reaches a minimum valueym as limited by the size of
the state space. We can estimate the minimum valueym as the
product ofFg(E), the global level density, andkh(E), the average
renormalized golden rule rate of eq 2.7, whereby

From eq 5.1 we see howym approaches zero as the molecule
becomes larger. The average ratekh(E) varies only with local
couplings and the local density of states,Fl(E), which grows as
a polynomial in the number of vibrational modesN. On the
other hand,Fg grows exponentially withN, so thatym becomes
exponentially smaller as the number of vibrational modes
increases, indicating a rapid approach to a sharp transition with
the size of the molecule.
We can also use eq 5.1 to estimate the range∆T in the value

of the transition parameterT(E) near the thermodynamic-limit
critical valueT(E) ) 1, over which the actual crossover to global
energy flow in a given molecule occurs. In an infinite system
there is a sharp transition atym ) 〈y〉 ) 0; in a finite system
there will be a crossover to global energy flow, which has been
reached, say, whenym ) 〈y〉 (>0), occurring whenT(E) is near
but not precisely at the infinite system transition value. Equation
5.1 indicates that the difference∆T between the crossover value
of T(E) and the critical valueT(E) ) 1 becomes exponentially
small with largerN, and the question then is how large∆T is
for a molecule as small as thiophosgene. For the thiophosgene
example at≈12 000 cm-1 discussed above,Fg≈ 200 cm,9 and
using the estimate forkh of 2.8 ps-1, we haveym ≈ 3 × 10-4

from eq 5.1. Taking this value forym, the width of the crossover
to global flow where〈y〉 ) ym is found using eq 2.6 to be∆T
≈ 10-4, so that the quantum ergodicity “transition” is indeed
close to the thermodynamic limit for a molecule even as small
as SCCl2, supporting our picture of a relatively crisp transition
for energy to flow globally throughout the vibrational space.
Nevertheless, it is possible to observe rather extensive energy

flow in relatively small molecules over a sizable portion of the
state space at values ofT smaller than this crossover value of
1. This is because even when〈y〉 > ym there is still a finite
fraction of states for whichy is predicted by eq 2.5 to be less
than ym and therefore globally mixed. For thiophosgene at
12 000 cm-1, for example, we predictT(E) ) 0.85. Using eq
2.5, we find that 6% of the states lie wherey < ym and almost
20% wherey < 10ym, which still corresponds to mixing over a

Figure 3. Distribution of the dilution factory given by eq 2.5, when
T ) 0.85.

ym ) (pFg(E) kh(E))
-1 (5.1)
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significant fraction of the available state space. The form
predicted forPy(y) atT ) 0.85 is shown in Figure 3. Sinceym
gets smaller exponentially as the number of vibrational modes
increases, the fraction of states for which energy flow is
reasonably extensive below but near the ergodicity transition
becomes very much smaller for larger molecules.

VI. Concluding Remarks

In this article we have compared analytical expressions for
vibrational mixing and flow rates derived from a local random
matrix model of the vibrational Hamiltonian of moderate size
polyatomics, with detailed computational results for several
organic molecules. The results presented above offer consider-
able encouragement for applying these simple random matrix
predictions to energy flow among typical vibrational states of
moderate size organics containing four or more atoms. Results
for formaldehyde compare favorably with available data8 on
vibrational mixing. Energy flow rates predicted for propyne at
about 9700 cm-1 above the ground state compare well with
those obtained from simulations4 of flow out of most states near
that energy.
We have also addressed effects of finite molecular size on

the quantum ergodicity transition. The local random matrix
predictions derived thus far hold strictly in the thermodynamic
limit; in finite systems, global energy flow is still possible out
of a finite fraction of states below the quantum ergodicity
transition, though the probability is seen to decrease rapidly with
the size of the molecule. This explains the extensive energy
flow out of states of thiophosgene9,22 at energies somewhat
below those at which it is predicted to be ergodic.
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Appendix

In this Appendix we describe the counting procedure for the
2:1 oscillator system discussed in section III. While the
counting scheme discussed below is applicable to this specific
system, it is straightforward to generalize it to anyn:moscillator
system or to oscillator systems with more than two sets of
oscillators.
For convenience, we define the notationK∆Nt,Q

(Nt) , which labels
the connectivityK by the polyad number of the initial state in
the superscript;∆Nt is the difference in value of the polyad
quantum numbers between the final and initial states, andQ is
the distance in quantum number space. To lowest order in the
effective couplingψQ (cf. eq 2.10), onlyK0,Q

(Nt) corresponding to
direct resonant transitions is required. Higher order terms
corresponding to a respectively larger number of off-resonant
transitions require information aboutK∆Nt,Q

(Nt) . We compute
K∆Nt,Q
(Nt) averaging over all combinations ofq1 quanta of excita-

tion among the 1-oscillators (with frequencues≈ωj 1) and q2
quanta of excitation among the 2-oscillators, subject to the
polyad constraintNt ) q1N1 + 2q2N2. The number of ways to
arrangeq1 quanta amongN1 modes is

The total number of states for a given (q1,q2) pair is thenΘ1Θ2.

To determineK∆Nt,Q
(Nt) for given values ofq1 andq2, we must

find the combination of ways to add and to remove quanta from
theN1 andN2 oscillators. It is always possible to add quanta
to the oscillators, but removingq quanta from an oscillator
requires that that oscillator be already excited to at leastqquanta.
We have to therefore determine the probability that there are at
leastq quanta in any of theN1 (N2) oscillators, given that there
areq1 (q2) quanta distributed among them, and this will be done
below. We definem1d

(q1)(q) (m2d
(q2)(q)) as the number of ways to

removeq quanta fromN1 (N2) oscillators whenq1 (q2) quanta
are distributed among them andm1u(q′) (m2u(q′)) as the number
of ways to addq′ quanta to those of theN1 (N2) oscillators from
which q of theq1 (q2) quanta available have not already been
removed. We can then expressK∆Nt,Q

(Nt) as

where{ } indicates averaging over all combinations ofq1 and
q2 such thatNt ) q1N1 + 2q2N2. Computing K∆Nt,Q

(Nt) is
furthermore broken down to computing the products
m1d
(q1)(a)m1u(b) andm2d

(q2)(c)m2u(d), which we turn to now.
To determinem1d

(q1)(a), we need information about the num-
ber of quanta in each of theN1 modes. We definenj1

(q1,N1)(q) as
the average number of oscillators among theN1 total that are
excited toq or more quanta, given that there areq1 quanta of
excitation distributed among theN1 modes. We then find that

With information about the average number of quanta per mode,
we can now computem1d

(q1)(a)m1u(b). All possible ways to
remove a quanta fromN1 oscillators must be considered:
removing alla quanta from one oscillator, removinga- 1 from
one and 1 from any of the remainingN1 - 1 oscillators,
removinga - 2 from one and 2 quanta from any one of the
others, or 1 quantum from each of two of the remaining
oscillators, etc. All of these possibilities have to be counted to
determinem1d

(q1)(a)m1u(b). Let l be the number of oscillators
losing at least one quantum of excitation for any one contribu-
tion; then b quanta will be added to the remainingN1 - l
oscillators. For example, for the four contributions for removing
a quanta listed above,l ) 1, 2, 2, and 3, respectively.

Θ1 ) (N1 + q1 - 1
q1 ) (A1)

K∆Nt,Q
(Nt) )

{ ∑
a,b,c,d;

a+ b+ c+ d)Q
(b-a)N1 + 2(d-c)N2)∆Nt

m1d
(q1)(a) m1u(b) m2d

(q2)(c) m2u(d)}q1,q2 (A2)

nj1
(q1,N1)(1)) Θ1

-1 ∑
p)1

min(q1,N1)

p(N1

p )(q1 - 1
p- 1 ) (A3)

nj1
(q1,N1)(2)) Θ1

-1 ∑
p)1

min(q1,N1)

∑
r)1

q1-2p

p(N1

p )(q1 - r - p- 1
p- 1 )Rp,r(1)

(A4a)

Rp,r
(1) ) (N1 - p

r ) (A4b)

nj1
(q1,N1)(m) )

Θ1
-1 ∑

p)1

min(q1,N1)

∑
r)1

q1-mp

p(N1

p )(q1 - r - (m- 1)p- 1
p- 1 )Rp,r(m-1)

(A5a)

Rp,r
(l) ) ∑

i)0
(N1 - p
i )Rp+i,r-li

(l-1) (A5b)
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Accounting for all the contributions tom1d
(q1)(a)m1u(b), we

arrive at the following algorithm

wherel ) ∑j)i
a lj. Each product of binomial coefficients is one

contribution tom1d
(q1)(a)m1u(b). The first coefficient givesm1u-

(b), where the number of oscillators to which quanta can be
added isN1 - l. Values of lj in eq A6 are determined as
follows: For the first product of binomial coefficients,lj)i is
given by the closest integer less than or equal toa/(a + 1 - j),
and lj*i is given by the closest integer less than or equal to (a
- ∑j′)i

j-1lj′(a + 1 - j′))/(a + 1 - j). The first product accounts
for the first contribution tom1d

(q1)(a)m1u(b). The sum overk
serves to change if possible any values ofl j in the products of
the binomial coefficients before changing the indexi in the first
sum. Values oflj are systematically lowered for allj exceptj
) a, keepingli g 1. The lowering ofl j continues untill i ) 1,
and alllj*i exceptla are zero. Then the indexi is increased by
1, and thelj are computed as for the first product. An identical
calculation is carried out form2d

(q2)(c)m2u(d) in order to com-
plete eq A2.
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